GCE

Mathematics

Advanced GCE

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
SW	Ignore subsequent working
M0, M1	Method mark awarded 0,1
A0, A1	Accuracy mark awarded 0,1
B0, B1	Independent mark awarded 0,1
SC	Special case
Λ	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions

a Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awar. marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark schem assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work mus the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the wo looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect r must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, awa the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involve your Team Leader.

The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candida intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be giver associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or e, of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correc ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to candidate passes through the correct answer as part of a wrong argument.
f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates oth are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) sh penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then exa the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appear
(complete) attempt and ignore the others.
NB Follow these maths-specific instructions rather than those in the assessor handbook.
h
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the questio. according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is gent this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question			Answer	Marks	Guid.	c/
4			$\frac{1}{4} n^{2}(n+1)^{2}-\frac{3}{2} n(n+1)$ $\frac{1}{4} n(n+1)(n+3)(n-2)$	M1 DM1 A1 M1 A1 A1 [6]	Express as difference of two series Use standard series results Obtain correct unsimplified answer Attempt to factorise At least factor of $n(n+1)$ Obtain correct answer	From their
5	(a)		$\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$	B1 B1 [2]	Each column correct	
5	(b)	(i)		$\begin{gathered} \text { B1 } \\ \text { DB1 } \\ {[2]} \end{gathered}$	Stretch Scale factor 4 in the y direction	Not "in the
5	(b)	(ii)	4	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	Correct value of determinant Scale factor for area	Allow scale
6				B1 B1 B1 B1 B1 B1 [6]	Circle Centre $(\sqrt{3}, 1)$ Passing through O and crosses y-axis again Line, with correct slope shown $\frac{1}{2}$ line starting at O Completely correct diagram for both loci	Ignore shad

Question		Answer	Marks	Guid.	c
7	(i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Attempt at matrix multiplication Obtain \mathbf{M}^{2} correctly Obtain given answer correctly	3
7	(ii)	$\left(\begin{array}{cc}3^{n} & 0 \\ 3^{n}-1 & 1\end{array}\right)$	B1 B1 [2]	3 elements correct $4^{\text {th }}$ element correct	
7	(iii)	$\left(\begin{array}{cc}3^{k+1} & 0 \\ 3^{k+1}-1 & 1\end{array}\right)$	B1 M1 A1 B1 [4]	Show that their result is true for $n=1$ or 2 Attempt to find $\mathbf{M}^{k} \cdot \mathbf{M}$ or vice versa Obtain correct answer Complete statement of induction conclusion	Must have
8	(i)		$\begin{gathered} \mathrm{M} 1 \\ \text { A1 } \\ {[2]} \end{gathered}$	Combine with a common denominator Obtain given answer correctly	
8	(ii)	$\frac{n}{n+1}$	M1 A1 M1 A1 [4]	Express terms using (i) At least $1^{\text {st }}$ two and last two correct Show terms cancelling Obtain correct answer, in terms of n	

Question		Answer	Marks	Guid.
8	(iii)	$1-\frac{n}{n+1}$	B1 B1FT [2]	$\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$ This value - (ii)
9	(i)	$\operatorname{det} \mathbf{X}=\Delta=10-9 a-a^{2}$	M1 M1 A1 [3]	Show correct expansion process for 3×3 Correct evaluation of any 2×2 Obtain correct answer aef
9	(ii)	$a=1$ or -10	$\begin{gathered} \text { M1 } \\ \text { A1FT } \\ \text { A1FT } \\ {[3]} \end{gathered}$	Their $\operatorname{det} \mathbf{X}=0$ Obtain correct answers from their (i)
9	(iii)	$\frac{1}{\Delta}\left(\begin{array}{ccc}-a & 2 & 6-9 a \\ 5 & -a-9 & 18-3 a \\ -a & 2 & a^{2}-4\end{array}\right)$	M1 A1 A1 B1ft [4]	Show correct process for adjoint entries Obtain at least four correct entries in adjoint Obtain completely correct adjoint Divide by their determinant
10	(i)	$\begin{aligned} & \alpha+\beta+\gamma=3 \\ & \alpha \beta+\beta \gamma+\gamma \alpha=2 \\ & \alpha \beta \gamma=-\frac{2}{3} \end{aligned}$	B1 B1 B1 [3]	State correct value State correct value State correct value

	uesti	Answer	Marks	Guid	c/
10	(ii)	EITHER			3
			M1	$c=(\pm) \alpha^{2} \beta^{2} \gamma^{2}$	
		$c=-\frac{4}{9}$	A1FT	Obtain given correct answer	FT for Sl_{2}
		$\sum \alpha^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta$	M1	Use correct expression	
		\sum_{5}	A1FT	Obtain correct value	FT for sign
		$a=-5$	A1FT	Obtain answer correctly	Sign chang
			M1*	Attempt to find an identity	
		$\sum \alpha^{2} \beta^{2}=\left(\sum \alpha \beta\right)^{2}-2 \alpha \beta \gamma \sum \alpha$	A1	Obtain correct identity	
			DM1	Use appropriate values	
		$b=8$	$\begin{aligned} & \text { A1 } \\ & {[9]} \end{aligned}$	Obtain correct answer cao	
		OR			
			B1	State or use correct substitution	
			M1	Rearrange, fractional indices isolated	
			DM1	Square both sides	
			DM1	Expand and simplify	
		$9 y^{3}-45 y^{2}+72 y-4=0$	A1	Obtain correct equation	
		$c=-\frac{4}{9}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use coefficients of their cubic Obtain given answer correctly	
		$a=-5$	A1FT	Obtain correct answer	
		$b=8$	A1FT	Obtain correct answer	
			[9]	SC mixture of methods only A1FT for a and b	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2012

